

Factors And Processes Determining Water Temperature in the Willamette River, Oregon

Stewart Rounds, Laurel Stratton Garvin, and others USGS Oregon Water Science Center, Portland, OR and Norman Buccola, Corps of Engineers, Portland District

U.S. Department of the Interior U.S. Geological Survey

A Riverine Heat Budget

Willamette River Models

- Full heat budget
- Willamette River and tributary models constructed and calibrated for temperature TMDL (2001, 2002) (PSU, USGS, ODEQ efforts)
- Extended to simulate 2011 (cool/wet) and 2015 (hot/dry), 2016
- Evaluate effects of upstream dams and flow management, and provide context for off-channel conditions

Willamette River Water Temperature

provisional results; subject to revision

Willamette River Heat Budget on a Sunny, Hot Day⁵

Willamette River Heat Budget on a Sunny, Hot Day⁶

provisional results; subject to revision

Willamette River Heat Budget on a Cloudy Day

provisional results; subject to revision

Willamette River at Keizer, July 1st, Noon

Willamette River at Keizer, July 1st

Willamette River at Keizer, July 11th

Heat Tracking

schematic modified from Bartholow (2000), USGS Open-File Report 99-112

Heat Tracking – 2015 N. Santiam Model Results

Modified version 4.1 of CE-QUAL-W2:

- Customized generic constituents
 - Heat: initial conditions
 - Heat: specific dam releases
 - Heat: all other flow inputs
 - Heat: environmental inputs
 - Flow: dam releases
 - Age: heat

42

8 Ø

> Fixed evaporation code for tracking age and flow

> > provisional results; subject to revision

Heat Tracking – 2015 N. Santiam Model Results

Heat Tracking – 2015 N. Santiam Model Results

At the mouth of the Santiam River, dam releases from Foster and Detroit Dams still comprise 85% of the flow in late September. The water has been in the system only about 1.5 days, but already most of the heat content from the dam releases is gone, replaced by environmental inputs and heat from other inflows.

> provisional results; subject to revision

Heat Tracking – Downstream to the Willamette River

Regression Models

Objective: Predict 7-day water temperatures at Salem/Keiser, Albany, and Willamette Falls based on streamflow and air temperature. Use those models to evaluate the potential effects of several flow-management scenarios on water temperature.

Salem		
Period	7-Day Mean	MAE (°C)
April - May	7d WT = 0.4983*(7d AT) + 51584/(7d Q) + 3.536	0.50
June - August	7d WT = 0.4952*(7d AT) + 35849/(7d Q) + 5.479	0.62
September - October	7d WT = 0.5244*(7d AT) + 27064/(7d Q) + 4.782	0.62
November - March	7d WT = 0.5349*(7d AT) + 9209/(7d Q) + 4.036	0.77
Period	7-Day Mean of Daily Max	MAE (°C)
April - May	7dADM WT = 0.3651*(7dADM AT) + 56521/(7d Q) + 3.259	0.66
June - August	7dADM WT = 0.347*(7dADM AT) + 37854/(7d Q) + 6.355	0.69
September - October	7dADM WT = 0.3566*(7dADM AT) + 30185/(7d Q) + 5.153	0.89
November - March	7dADM WT = 0.4582*(7dADM AT) + 2725/(7d Q) + 3.305	0.87

- where WT = water temperature
 - AT = air temperature at Salem airport
 - Q = streamflow at Salem
 - 7d = 7-day mean
 - 7dADM = 7-day mean of daily maximum, and
 - MAE = mean absolute error

Streamflow Scenario: TSP, Salem, from RES-SIM¹⁷

provisional results; subject to revision

Temperature Conditions, TSP, 7dADM, Salem

provisional results; subject to revision

W2 Results Provide Main-Channel Context: 2011

provisional results; subject to revision

W2 Results Provide Main-Channel Context: 2015²⁰

provisional results; subject to revision

Example Off-channel Temperature Comparison

(Alcove at RM 107.5)

≊USGS

Willamette River, Right Bank, RM 107.3 (444527123085100) Willamette River Alcove, Right Bank, RM 107.5 (444517123084900)

Data from U.S. Geological Survey 22 22 21 Main channel 21 20 20 19 19 Water Temperature (°C) Ö 18 18 Temperature 17 17 6 16 15 15 Water ⁻ 14 14 13 13 12 12 Alcove 11 11 10 10 0-05-2015 26-2015 9-07-2015 9-11-2015 9-15-2015 10-01-2015 3-30-2015 9-03-2015 9-19-2015 9-23-2015 9-27-2015

Tue Jul 25 23:06:52 2017

provisional results; subject to revision

10

20

Kilometers

Factors Affecting Water Temperature

Shade

 topographic and vegetative (not a huge effect for Willamette)

Surface area

- area is critical to the total energy flux (in and out)
- width-to-depth ratio is important
- Dam operations
- Streamflow
 - affects "thermal mass" and residence time, replacement rate, downstream "effects" distance
 - need to track each water parcel to really track the heat sources
- Hyporheic flow
- It's not just air temperature!
 "Even my dog knows it is cooler in the shade."

Summary

- The most important heat fluxes across the air/water interface of streams are radiative.
- Weather and residence time are dominant controlling factors for stream temperature at downstream sites; close to dams, operations and release temps are dominant.
- The air/water heat flux is large enough to cause a water parcel to "forget" its thermal history after a number of days.
 - exact time scale varies; roughly 2-3 days in Willamette and larger tribs
- Regression models based on streamflow and air temp can predict downstream temperatures successfully.
 - at sites "far enough" downstream

Contacts and References

Contacts:

Stewart Rounds and Laurel Stratton Garvin USGS Oregon Water Science Center *sarounds@usgs.gov*, *Istratton@usgs.gov* 503-251-3280, 503-251-3234

Norman Buccola U.S. Army Corps of Engineers, Portland District *Norman.L.Buccola@usace.army.mil* 503-808-4837

References:

- Bartholow, J.M., 2000, The stream segment and stream network temperature models— A self-study course: U.S. Geological Survey Open-File Report 99-112, 276 p. (Available at https://pubs.er.usgs.gov/publication/ofr99112.)
- USGS Data Grapher: https://or.water.usgs.gov/grapher/

